CR5000 Specifications

Electrical specifications are valid over a -25° to $+50^{\circ} \mathrm{C}$ range unless otherwise specified; testing over -40° to $+85^{\circ} \mathrm{C}$ available as an option, excludes batteries. Non-condensing environment required. Yearly calibrations are recommended to maintain electrical specifications.

PROGRAM EXECUIION RATE

The CR5000 can measure one channel and store the result in $500 \mu \mathrm{~s}$; all $40 \mathrm{SE}^{*}$ channels can be measured in 8 ms (5 kHz aggregate rate).

ANALOG INPUTS

DESCRIPTION: 20 DF* * or 40 SE , individually configured. Channel expansion provided through AM16/32, AM416, and AM25T Multiplexers.
RANGES, RESOLUTION, AND TYPICAL INPUT NOISE: Basic Resolution (Basic Res) is the A/D resolution of a single conversion. Resolution of DFM ${ }^{*}$ with input reversal is half the Basic Res. Noise values are for DFM with input reversal; noise is greater with SEM.*

Input Rng (mV)	$\begin{gathered} \text { Basic } \\ \text { Res }(\mu \mathrm{V}) \end{gathered}$	$\begin{gathered} 0 \text { Int. } \\ \text { (} \mu \mathrm{V} \text { RMS) } \end{gathered}$	$250 \mu \mathrm{~s}$ Int. ($\mu \mathrm{V}$ RMS)	20/16.7 ms Int. ($\mu \mathrm{V}$ RMS)
± 5000	167	70	60	30
± 1000	33.3	30	12	6
± 200	6.67	8	2.4	1.2
± 50	1.67	3.0	0.8	0.3
± 20	0.67	1.8	0.5	0.2
ACCURACY ${ }^{\dagger}$:				
$\pm(0.05 \%$ of Reading + Offset)				0° to $40^{\circ} \mathrm{C}$
$\pm(0.075 \%$ of Reading + Offset)				to $50^{\circ} \mathrm{C}$
$\pm\left(0.10 \%\right.$ of Reading + Offset) $\quad-40^{\circ}$ to $85^{\circ} \mathrm{C}$				
Offset for DFM w/input reversal = Basic Res $+1 \mu \mathrm{~V}$				
Offset for DFM w/o input reversal = 2Basic Res $+2 \mu \mathrm{~V}$				
Offset for SEM $=2$ Basic Res $+10 \mu \mathrm{~V}$				
MINIMUM TIME BETWEEN MEASUREMENTS:				
Zero Integration: $250 \mu \mathrm{~s}$ Integration: 16.7 ms Integration: 20 ms Integration:				$\mu \mathrm{s}$
				$\mu \mathrm{s}$
				9 ms
				2 ms

COMMON MODE RANGE: $\pm 5 \mathrm{~V}$
DC COMMON MODE REJECTION: >100 dB with input reversal ($>80 \mathrm{~dB}$ without input reversal)
NORMAL MODE REJECTION: 70 dB @ 60 Hz when using 60 Hz rejection
SUSTAINED INPUT VOLTAGE WITHOUT DAMAGE: ± 16 Vdc
INPUT CURRENT: $\pm 2 \mathrm{nA}$ typ., $\pm 10 \mathrm{nA}$ max. @ $50^{\circ} \mathrm{C}$
INPUT RESISTANCE: $20 \mathrm{G} \Omega$ typical

ACCURACY OF INTERNAL THERMOCOUPLE

REFERENCE JUNCTION:
$\pm 0.25^{\circ} \mathrm{C}, 0^{\circ}$ to $40^{\circ} \mathrm{C}$
$\pm 0.5^{\circ} \mathrm{C},-25^{\circ}$ to $50^{\circ} \mathrm{C}$
$\pm 0.7^{\circ} \mathrm{C},-40^{\circ}$ to $85^{\circ} \mathrm{C}$

ANALOG OUTPUTS

DESCRIPTION: 4 switched voltage; 4 switched current; 2 continuous voltage; switched outputs active only during measurements, one at a time.
RANGE: Voltage (current) outputs programmable between $\pm 5 \mathrm{~V}(\pm 2.5 \mathrm{~mA})$
RESOLUTION: $1.2 \mathrm{mV}(0.6 \mu \mathrm{~A})$ for voltage (current) outputs
ACCURACY: $\pm 10 \mathrm{mV}(\pm 10 \mu \mathrm{~A})$ for voltage (current) outputs
CURRENT SOURCING: 50 mA for switched voltage; 15 mA for continuous
CURRENT SINKING: 50 mA for switched voltage; 5 mA for continuous (15 mA w/selectable option)
COMPLIANCE VOLTAGE: $\pm 5 \mathrm{~V}$ for switched current excitation

RESISTANCE MEASUREMENTS

Provides voltage ratio measurements of 4 - and 6 -wire full bridges, and 2-, 3-, 4 -wire half bridges. Direct resistance measurements available with current excitation. Dual-polarity excitation is recommended.
VOLTAGE RATIO ACCURACY ${ }^{\dagger}$: Assumes input and excitation reversal and an excitation voltage of at least 2000 mV .
$\pm\left(0.04 \%\right.$ Reading + Basic Res/4) $\quad 0^{\circ}$ to $40^{\circ} \mathrm{C}$ $\pm(0.05 \%$ Reading + Basic Res $/ 4) \quad-25^{\circ}$ to $50^{\circ} \mathrm{C}$ $\pm\left(0.06 \%\right.$ Reading + Basic Res $/ 4$) -40° to $85^{\circ} \mathrm{C}$
ACCURACY ${ }^{\dagger}$ WITH CURRENT EXCITATION:
Assumes input and excitation reversal, and an excitation current, I_{x}, of at least 1 mA . $\pm\left(0.075 \%\right.$ Reading + Basic Res $\left./ 2 \mathrm{II}_{\mathrm{x}}\right) 0^{\circ}$ to $40^{\circ} \mathrm{C}$ $\pm\left(0.10 \%\right.$ Reading + Basic Res $\left./ 2 \mathrm{II}_{\mathrm{x}}\right)-25^{\circ}$ to $50^{\circ} \mathrm{C}$ $\pm\left(0.12 \%\right.$ Reading + Basic Res $\left./ 2 \mathrm{I}_{\mathrm{x}}\right)-40^{\circ}$ to $85^{\circ} \mathrm{C}$

PERIOD AVERAGING MEASUREMENIS

DESCRIPTION: The average period for a single cycle is determined by measuring the duration of a specified number of cycles. Any of the 40 SE analog inputs can be used; signal attenuation and ac coupling may be required.
INPUT FREQUENCY RANGE:

Input	Signal (peak to peak)		Min.	Max.
Rng (mV)	Min.	Max. ${ }^{1}$	Pulse W.	Freq
± 5000	600 mV	10 V	$2.5 \mu \mathrm{~s}$	200 kHz
± 1000	100 mV	2.0 V	$5.0 \mu \mathrm{~s}$	100 kHz
± 200	4 mV	2.0 V	$25 \mu \mathrm{~s}$	20 kHz

${ }^{1}$ Maximum signals must be centered around datalogger ground.
RESOLUTION: $70 \mathrm{~ns} /$ number of cycles measured
ACCURACY: $\pm(0.03 \%$ of Reading + Resolution $)$

PULSE COUNIERS

DESCRIPTION: Two 16-bit inputs selectable for switch closure, high frequency pulse, or low-level ac.
MAXIMUM COUNT: 4×10^{9} counts per scan
SWITCH CLOSURE MODE:
Minimum Switch Closed Time: 5 ms
Minimum Switch Open Time: 6 ms
Maximum Bounce Time: 1 ms open without being counted.
HIGH FREQUENCY PULSE MODE:
Maximum Input Frequency: 400 kHz
Maximum Input Voltage: $\pm 20 \mathrm{~V}$
Voltage Thresholds: Count upon transition from below 1.5 V to above 3.5 V at low frequen-
cies. Larger input transitions are required at high frequencies because of $1.2 \mu \mathrm{~s}$ time constant filter.
LOW LEVEL AC MODE:
Internal ac coupling removes dc offsets up to $\pm 0.5 \mathrm{~V}$.
Input Hysteresis: 15 mV
Maximum ac Input Voltage: $\pm 20 \mathrm{~V}$
Minimum ac Input Voltage (sine wave):

(mV RMS)	Range (Hz)
20	1.0 to 1000
200	0.5 to 10,000
1000	0.3 to 16,000

DIGITAL I/O PORTS

DESCRIPTION: 8 ports selectable as binary inputs or control outputs.
OUTPUT VOLTAGES (no load): high $5.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$; low < 0.1 V
OUTPUT RESISTANCE: 330Ω
INPUT STATE: high 3.0 to 5.3 V ; low -0.3 to 0.8 V
INPUT RESISTANCE: $100 \mathrm{k} \Omega$

EMI and ESD PROTECTION

The CR5000 is encased in metal and incorporates EMI filtering on all inputs and outputs. Gas discharge tubes provide robust ESD protection on all terminal block inputs and outputs. The following European C standards apply.
EMC tested and conforms to BS EN61326:1998.
Details of performance criteria applied are available upon request.
Warning: This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to correct the interference at the user's own expense.

CPU AND INIERFACE

PROCESSOR: Hitachi SH7034
MEMORY: Battery-backed SRAM provides 2 Mbytes for data and operating system use with 128 kbytes reserved for program storage. Expanded data storage with PCMCIA type I, type II, or type III card.
DISPLAY: 8-line-by-21 character alphanumeric or 128×64 pixel graphic LCD display w/backlight.
SERIAL INTERFACES: Optically isolated RS-232 9 -pin interface for computer or modem. CSI/O 9 -pin interface for peripherals such as CSI modems.
BAUD RATES: Selectable from 1,200 to 115,200 bps. ASCII protocol is eight data bits, one start bit, one stop bit, no parity.
CLOCK ACCURACY: ± 1 minute per month, -25° to $+50^{\circ} \mathrm{C} ; \pm 2$ minute per month, -40° to $+85^{\circ} \mathrm{C}$

SYSTEM POWER REQUIREMENTS

VOLTAGE: 11 to 16 Vdc
TYPICAL CURRENT DRAIN: $400 \mu \mathrm{~A}$ software power off; 1.5 mA sleep mode; 4.5 mA at $1 \mathrm{~Hz}(200 \mathrm{~mA}$ at 5 kHz) sample rate.
INTERNAL BATTERIES: 7 Ahr rechargeable base (optional); 1650 mAhr lithium battery for clock and SRAM backup, 10 years of service typical, less at high temperatures.
EXTERNAL BATTERIES: 11 to 16 Vdc ; reverse polarity protected.

PHYSICAL SPECIRCATIONS

SIZE: $9.8^{\prime \prime} \times 8.3^{\prime \prime} \times 4.5^{\prime \prime}(24.7 \mathrm{~cm} \times 21.0 \mathrm{~cm} \times 11.4 \mathrm{~cm})$ Terminal strips extend 0.4 " (1.0 cm).
WEIGHT: $4.5 \mathrm{lbs}(2.0 \mathrm{~kg})$ with low-profile base; $12.2 \mathrm{lbs}(5.5 \mathrm{~kg})$ with rechargeable base

WARRANTY

Three years against defects in materials and workmanship.
*SE(M): Single-Ended (Measurement)
*DF(M): Differential (Measurement)
${ }^{\dagger}$ Sensor and measurement noise not included.

We recommend that you confirm system configuration and critical specifications with Campbell Scientific before purchase.

